Documentation

Configuring Google Vertex AI#

Google Vertex AI is supported for Gemini and Anthropic models.

  1. Create the Google Application Default Credentials file and store it in a Kubernetes Secret. If your credentials are in a different location, update the filepath.
kubectl create secret generic kagent-google-creds -n kagent --from-file=~/.config/gcloud/application_default_credentials.json
  1. For Gemini models: create a ModelConfig resource using the GeminiVertexAI provider that references the secret and key name, and specify the Gemini model you want to use. Note the projectID and location are required:
apiVersion: kagent.dev/v1alpha2
kind: ModelConfig
metadata:
name: gemini-model-config-vertexai
namespace: kagent
spec:
apiKeySecret: kagent-google-creds
apiKeySecretKey: google_creds.json
model: gemini-2.0-flash-lite
provider: GeminiVertexAI
geminiVertexAI:
projectID: kagent-dev
location: us-west1
maxOutputTokens: 1000
  1. For Anthropic models: create a ModelConfig resource using the AnthropicVertexAI provider that references the secret and key name, and specify the Anthropic model you want to use. Note the projectID and location are required:
apiVersion: kagent.dev/v1alpha2
kind: ModelConfig
metadata:
name: anthropic-model-config-vertexai
namespace: kagent
spec:
apiKeySecret: kagent-google-creds
apiKeySecretKey: google_creds.json
model: claude-sonnet-4@20250514
provider: AnthropicVertexAI
anthropicVertexAI:
projectID: kagent-dev
location: us-east5
Kagent Lab: Discover kagent and kmcp
Free, on‑demand lab: build custom AI agents with kagent and integrate tools via kmcp on Kubernetes.